38 research outputs found

    First results of a GNSS-R experiment from a stratospheric balloon over boreal forests

    Get PDF
    The empirical results of a global navigation satellite systems reflectometry (GNSS-R) experiment onboard the Balloon EXperiments for University Students (BEXUS) 17 stratospheric balloon performed north of Sweden over boreal forests show that the power of the reflected signals is nearly independent of the platform height for a high coherent integration time T-c = 20 ms. This experimental evidence shows a strong coherent component in the forward scattered signal, as compared with the incoherent component, that allows to be tracked. The bistatic coherent reflectivity is also evaluated as a function of the elevation angle, showing a decrease of similar to 6 dB when the elevation angle increases from 35. to 70 degrees. The received power presents a clearly multimodal behavior, which also suggests that the coherent scattering component may be taking place in different forest elements, i.e., soil, canopy, and through multiple reflections canopy-soil and soil-trunk. This experiment has provided the first GNSS-R data set over boreal forests. The evaluation of these results can be useful for the feasibility study of this technique to perform biomass monitoring that is a key factor to analyze the carbon cycle.Peer ReviewedPostprint (author's final draft

    The GRSS standard for GNSS-reflectometry

    Get PDF
    In February 2019 a Project Authorization Request was approved by the Institute of Electrical and Electronics Engineers (IEEE) Standards Association with the title “Standard for Global Navigation Satellite System Reflectometry (GNSS-R) Data and Metadata Content”. A Working Group has been assembled to draft this standard with the purpose of unifying and documenting GNSS-R measurements, calibration procedures, and product level definitions. The Working Group (http://www.grss-ieee.org/community/technical-committees/standards-or-earth-observations/) includes members, collaborators, and contributors from academia, international space agencies, and private industry. In a recent face-to-face meeting held during the ARSI+KEO 2019 Conference, the need was recognized to develop a standard with a wide range of operations, providing procedure guidelines independently of constraints imposed by current limitations on geophysical parameters retrieval algorithms. As such, this effort aims to establish the fundamentals of a potential virtual network of satellites providing inter-comparable data to the scientific community.Peer ReviewedPostprint (author's final draft

    Empirical results of a surface-level GNSS-R experiment in a wave channel

    Get PDF
    The scattering of GNSS signals over a water surface is studied when the receiver is at a low height, as in GNSS-R coastal altimetry. The precise determination of the local sea level and wave state from the coast will provide useful altimetry and wave information as “dry” tide and wave gauges. An experiment has been conducted at the Canal d'Investigació i Experimentació Marítima (CIEM) wave channel for two simulated “sea” states. The GNSS-reflectometer used is the P(Y) and C/A ReflectOmeter (PYCARO) instrument, a closed-loop receiver with delay and Doppler tracking loops that uses the conventional GNSS-R technique for the GPS C/A code. After retracking of the scattered GPS signals, the coherent and incoherent components have been studied. To reproduce the transmitted GPS signals indoors, a Rohde and Schwarz signal generator is used. It is found that, despite the ratio of the coherent and incoherent components being ~1, the coherent component is strong enough that it can be tracked. The coherent component comes from clusters of points on the surface that approximately satisfy the specular reflection conditions (“roughed facet”). The Pearson’s linear correlation coefficients of the derived “sea” surface height with the wave gauge data are: 0.78, 0.85 and 0.81 for a SWH = 36 cm and 0.34, 0.74, and 0.72 for a SWH = 64 cm, respectively, for transmitter elevation angles of = 60°, 75° and 86°, respectively. Finally, the rms phase of the received signal before the retracking processing is used to estimate the effective rms surface height of the ‘facets’, where the waves get scattered. It is found to be between 2.5- and 4.1-times smaller than the theoretical values corresponding to the half of the coherent reflectivity decaying factor.Peer Reviewe

    Unified GNSS-R formulation including coherent and incoherent scattering components

    No full text
    Global Navigation Satellite Systems Reflectometry (GNSSR) is a sort of multi-static radar using navigation signals as signals of opportunity. Due to the large number of transmitting satellites multiple scattering points over the Earth's surface can be simultaneously tracked, which provides wide-swath and improved spatio-temporal sampling over current space-borne radar altimetry missions. The lack of experimental datasets from space covering signals from multiple constellations (GPS, GLONASS, Galileo and Beidou) at dual-band (L1 and L2), and dual-polarization (Right and Left Hand Circular Polarization: RHCP and LHCP), over the ocean, land, and cryosphere remains a bottleneck to further develop these techniques. 3Cat-2 is a 6 unit (3 × 2 elementary blocks of 10 × 10 × 10 cm3) cubesat mission designed and implemented at the Universitat Politecnica de Catalunya-BarcelonaTech. It will be launched in late July 2016. During one of the two stratospheric balloon flights of the 3Cat-2 payload, the P(Y) and C/A ReflectOmeter (PYCARO), it was found that the received signal power was nearly constant with the balloon height. This revealed the presence of a strong coherent component. This work presents the derivation of a unified equation to account for both incoherent and coherent scattering contributions.Peer ReviewedPostprint (published version

    Empirical results of a surface-level GNSS-R experiment in a wave channel

    No full text
    The scattering of GNSS signals over a water surface is studied when the receiver is at a low height, as in GNSS-R coastal altimetry. The precise determination of the local sea level and wave state from the coast will provide useful altimetry and wave information as “dry” tide and wave gauges. An experiment has been conducted at the Canal d'Investigació i Experimentació Marítima (CIEM) wave channel for two simulated “sea” states. The GNSS-reflectometer used is the P(Y) and C/A ReflectOmeter (PYCARO) instrument, a closed-loop receiver with delay and Doppler tracking loops that uses the conventional GNSS-R technique for the GPS C/A code. After retracking of the scattered GPS signals, the coherent and incoherent components have been studied. To reproduce the transmitted GPS signals indoors, a Rohde and Schwarz signal generator is used. It is found that, despite the ratio of the coherent and incoherent components being ~1, the coherent component is strong enough that it can be tracked. The coherent component comes from clusters of points on the surface that approximately satisfy the specular reflection conditions (“roughed facet”). The Pearson’s linear correlation coefficients of the derived “sea” surface height with the wave gauge data are: 0.78, 0.85 and 0.81 for a SWH = 36 cm and 0.34, 0.74, and 0.72 for a SWH = 64 cm, respectively, for transmitter elevation angles of = 60°, 75° and 86°, respectively. Finally, the rms phase of the received signal before the retracking processing is used to estimate the effective rms surface height of the ‘facets’, where the waves get scattered. It is found to be between 2.5- and 4.1-times smaller than the theoretical values corresponding to the half of the coherent reflectivity decaying factor.Peer Reviewed

    Unified GNSS-R formulation including coherent and incoherent scattering components

    No full text
    Global Navigation Satellite Systems Reflectometry (GNSSR) is a sort of multi-static radar using navigation signals as signals of opportunity. Due to the large number of transmitting satellites multiple scattering points over the Earth's surface can be simultaneously tracked, which provides wide-swath and improved spatio-temporal sampling over current space-borne radar altimetry missions. The lack of experimental datasets from space covering signals from multiple constellations (GPS, GLONASS, Galileo and Beidou) at dual-band (L1 and L2), and dual-polarization (Right and Left Hand Circular Polarization: RHCP and LHCP), over the ocean, land, and cryosphere remains a bottleneck to further develop these techniques. 3Cat-2 is a 6 unit (3 × 2 elementary blocks of 10 × 10 × 10 cm3) cubesat mission designed and implemented at the Universitat Politecnica de Catalunya-BarcelonaTech. It will be launched in late July 2016. During one of the two stratospheric balloon flights of the 3Cat-2 payload, the P(Y) and C/A ReflectOmeter (PYCARO), it was found that the received signal power was nearly constant with the balloon height. This revealed the presence of a strong coherent component. This work presents the derivation of a unified equation to account for both incoherent and coherent scattering contributions.Peer Reviewe

    Experimental evaluation of GNSS-reflectometry altimetric precision using the P(Y) and C/A signals

    No full text
    This work describes a novel dual-band Global Navigation Satellite Systems Reflectometer (GNSS-R) that uses the P(Y) and C/A signals scattered over the sea surface to perform highly precise altimetric measurements. The results derived from two different ground-based field experiments over a dam and over the sea under different surface's roughness conditions are presented. The analysis of the altimetric performance shows that the results obtained using the P(Y) code improve by a factor between 1.4 and 2.4 as compared to the results obtained using the C/A code, respectively, for high and mid-low satellite's elevation angles.Peer ReviewedPostprint (published version

    Submeter ocean altimetry with GPS L1 C/A signal

    No full text
    The ultimate accuracy and precision of conventional1 and interferometric2 Global Positioning Satellite System Rerflectometry (GNSS-R) techniques for mesoscale ocean altimetry are still a matter of debate in the scientific community. The results obtained depend on the techniques used to identify the point of the specular delay in the waveform, and to perform the different delay corrections to derive the geometric delay. Also, the geometric model assumed for the scenario determines the accuracy of the altimeter range. This work presents the results of two ESA-sponsored airborne experiments using conventional GNSS-R showing subdecimeter altimetric precision with the Global Positioning System (GPS) L1 C/A code only. The Relative Mean Dynamic Topography (RMDT) obtained in both experiments is compared with results derived from traditional radar altimetry provided by Jason 2. The Root Mean Square (RMS) of the RMDT difference between both measurement systems is 48 cm for the first flight, and 198 cm for the second flight. Additionally, results from the second flight experiment show the capability of the proposed technique to retrieve sea slope measurements by superposing the ground track with EM96 geoid undulations.Peer Reviewe

    Experimental evaluation of GNSS-reflectometry altimetric precision using the P(Y) and C/A signals

    No full text
    This work describes a novel dual-band Global Navigation Satellite Systems Reflectometer (GNSS-R) that uses the P(Y) and C/A signals scattered over the sea surface to perform highly precise altimetric measurements. The results derived from two different ground-based field experiments over a dam and over the sea under different surface's roughness conditions are presented. The analysis of the altimetric performance shows that the results obtained using the P(Y) code improve by a factor between 1.4 and 2.4 as compared to the results obtained using the C/A code, respectively, for high and mid-low satellite's elevation angles.Peer Reviewe

    First results of a GNSS-R experiment from a stratospheric balloon over boreal forests

    No full text
    The empirical results of a global navigation satellite systems reflectometry (GNSS-R) experiment onboard the Balloon EXperiments for University Students (BEXUS) 17 stratospheric balloon performed north of Sweden over boreal forests show that the power of the reflected signals is nearly independent of the platform height for a high coherent integration time T-c = 20 ms. This experimental evidence shows a strong coherent component in the forward scattered signal, as compared with the incoherent component, that allows to be tracked. The bistatic coherent reflectivity is also evaluated as a function of the elevation angle, showing a decrease of similar to 6 dB when the elevation angle increases from 35. to 70 degrees. The received power presents a clearly multimodal behavior, which also suggests that the coherent scattering component may be taking place in different forest elements, i.e., soil, canopy, and through multiple reflections canopy-soil and soil-trunk. This experiment has provided the first GNSS-R data set over boreal forests. The evaluation of these results can be useful for the feasibility study of this technique to perform biomass monitoring that is a key factor to analyze the carbon cycle.Peer Reviewe
    corecore